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a b s t r a c t

Vibration of plates with various boundary and internal support conditions is analyzed,

based on classical thin-plate theory and the Rayleigh–Ritz approach. To satisfy the

support conditions, a new set of admissible functions, namely the computed shape

functions, is applied to each of the two orthogonal in-plane directions. Similar to

conventional finite element shape functions, parameters associated with each term of

the proposed functions represent the actual displacements of the plates, thus making

the method easily applicable to a wide range of support conditions, including

continuous or partial edge supports and discrete internal supports. The method can

also be applied to plates consisting of rectangular segments, like an L-shape plate, which

sub-domains can be formulated using the computed shape functions and subsequently

assembled in the usual finite element manner. Unlike many other admissible functions

proposed in the literature, however, the computed shape functions presented herein are

C1—continuous and involve no complicated mathematical functions; they can be easily

computed a priori by means of a continuous beam computer program and only the

conventional third-order beam shape functions are involved in subsequent formulation.

In all the examples given herein, only a few terms of these functions are sufficient to

obtain accurate frequencies, thus demonstrating its computational effectiveness and

accuracy. The method is further extended to the study of optimal location and stiffness

of discrete elastic supports for maximizing the fundamental frequency of plates. Unlike

rigid point supports with infinite stiffness, which optimal locations have been studied

by many researchers, only discrete supports with a finite stiffness is considered in this

paper. The optimal location and stiffness of discrete supports are determined for

isotropic plates and laminated plates with various stacking sequences, which results are

presented for the first time in literature.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration of isotropic and composite plates with various support conditions have been studied intensively in the past
few decades, based on various plate theories, analytical and numerical methods. To date, numerical methods applied in this
area can be classified into three major categories, namely (1) the finite element method including the recent meshless
methods [1]; (2) the finite strip method and (3) the Rayleigh–Ritz approach using various types of admissible functions
that satisfy the boundary and internal support conditions a priori. For plates without awkward geometry and relatively
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simple support conditions, the Ritz approach is particularly attractive in terms of its relatively rapid convergence and smaller
number of unknowns, provided that an appropriate set of admissible functions can be formulated. The finite element method,
on the other hand, does not require admissible functions that satisfy the support conditions a priori; support conditions are
directly imposed at the corresponding nodes, thus making the method applicable to a wider range of support conditions. This
advantage is attributed to the fact that, unlike many admissible functions used in the Ritz approach, the parameters associated
with the shape functions of finite elements represent the actual displacements at the nodes. As such, based on the said merits
of the Ritz method and the finite element method, it would be advantageous to formulate a set of admissible functions that
allows support conditions to be imposed directly at nodal points of the plates, and at the same time, that converges rapidly
with small number of unknowns. To this end, the proposed computed shape functions, which was previously developed by the
author and Cheung [2–4] for finite strip analysis, is now modified and extended to each of the two orthogonal directions of
the plates. Stiffness and mass matrices are formulated within the context of thin-plate theory using the Ritz method and the
resulting eigenvalues can be easily obtained. Numerical examples of thin plates with various support conditions and non-
rectangular domains are given herein to demonstrate its versatility and rapid convergence.

Extensive studies have been conducted by many researchers, particularly, for the vibration of plates with rigid point supports,
because of its practical significance. Optimization of rigid point support positions for maximizing the fundamental frequencies and
buckling loads of plates was studied by Xiang et al. [5], among other researchers. The maximum possible fundamental frequency
was also investigated by Akesson and Olhoff [6], using the Courant maximum–minimum theorem [7]. In addition, an interesting
observation was first made by Narita [8] that the natural frequencies and mode shapes can be significantly altered by adding
springs of infinite stiffness (i.e. rigid point supports) at some optimal locations along the nodal lines of mode shapes. Despite a lot
of studies being devoted to rigidly supported plates, it is difficult, if not impossible, to construct a support with infinite stiffness in
practice, and as such, finding the optimal location for springs with a finite stiffness is of a lot more practical significance. In this
respect, Won and Park [9] studied the optimal locations of elastic springs for a cantilevered isotropic plate, while Wang et al. [10]
studied cantilevered isotropic plates with and without slots. Based on these previous works, elastic spring optimization of isotropic
and composite plates with various boundary conditions and stacking sequences are investigated in this study using the proposed
computed shape function and the direct search optimization method.

2. Computed shape functions (COMSFUN) for plate bending problems

To clarify the idea of computed shape functions, consider a typical plate strip of span Lx lying along the X-axis (Fig. 1a).
The width of the strip is uniform and, for simplicity, taken as unity in the following discussion. The strip is divided into a
number of beam elements, say be, which are not necessarily of equal length. Similar to the idea of conventional shape
functions, a computed shape function is obtained by imposing a unit deflection to one of the nodes and zero deflection to
the remaining nodes. The same procedure is repeated for each node and no rotation is allowed at the two ends of the beam
when computing these shape functions. In addition, two other computed shape functions are obtained by imposing a unit
rotation to either end of the beam while maintaining zero deflection at all nodes. As such, a total of (be+3) numbers of
computed shape functions can be determined.

Written in terms of the usual beam shape functions [N(x)], we can express the computed shape functions as:

XmðxÞ ¼
Xbe

k¼1

½NðxÞ�famgk for m ¼ 1;2; . . . ; p; p ¼ be þ 3 (1a)

where {am}k denotes the nodal displacements and rotations of beam element k of the mth computed shape function Xm(x).
X1(x) and Xp(x) correspond to the two computed shape functions with unit rotation at one end and zero rotation at the
other. The remaining computed shape functions correspond to those with unit deflection at one node and zero deflection at
the others.

Referring to Fig. 1b and assuming that xn denotes the location of the nth node, the following conditions are satisfied by
the COMSFUN:

For m ¼ 2,3,yp�1

XmðxnÞ ¼ 1 if m� 1 ¼ n where n ¼ 1;2; . . . ; p� 2

¼ 0 if m� 1an (1b)

and

dXmðxÞ

dx
¼ 0 at x ¼ 0 and x ¼ Lx (1c)

For m ¼ 1 or p

dX1ðxÞ

dx
¼ 1;

dXpðxÞ

dx
¼ 0 at x ¼ 0; (1d)

dX1ðxÞ

dx
¼ 0;

dXpðxÞ

dx
¼ 1 at x ¼ Lx; (1e)
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Fig. 1. (a) A plate strip is divided into five elements for computing eight shape functions; (b) computed shape functions (COMSFUN) corresponding to unit

deflection at each of the interior nodes; (c) COMSFUN for unit rotation at either end (d) COMSFUN for unit deflection at either end.
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and

X1ðxnÞ ¼ 0 ¼ XpðxnÞ for all n ¼ 1; . . . ; p� 2 (1f)

It is apparent that the COMSFUN only comprises third-order beam functions with C1-continuity.
For the sake of clarity, consider only the vertical (out-of-plane) displacement field at mid-plane, i.e. w(x, y) of a

rectangular plate segment. Using COMSFUN as the trial function in each of the two orthogonal directions, we have:

wðx; yÞ ¼
Xp

m

Xq

n

XmðxÞYnðyÞwmn (2)

where Xm(x) and Yn(y) denote the mth COMSFUN and the nth COMSFUN along X- and Y-direction, respectively. p and q are
the number of COMSFUN in the respective direction. The displacement parameter associated with the product Xm(x)Yn(y) is
denoted by wmn which represents the actual vertical displacement component or its derivatives at the corresponding
nodes. To clarify the representation of the displacement parameters, a unit square plate, as shown in Fig. 2, is divided into
five beam segments with eight number of computed shape functions in each direction (two for the unit rotations at the
end and six for the unit nodal deflections). The displacement parameters wmn of the plate segment in Fig. 2 represents
(1) the vertical displacement for all interior nodes; (2) the displacement and its normal derivatives for all edge nodes and
(3) the displacement and its normal and cross-derivatives for the four corner nodes. Such physical representations facilitate
the direct implementation of point supports at the nodal locations.

For application to isotropic thin plates, the vertical displacement field as given by Eq. (2) can be directly applied to
formulate the stiffness and mass matrices, based on thin-plate theory. In case of laminated plates with general stacking
sequences (see Fig. 3), however, in-plane displacements need to be taken into account, as described in the following
section.
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Fig. 2. Correlation between displacement parameters wmn and the actual displacement and its derivatives at the nodes. w ¼ nodal deflection; wx ¼ qw=qx

and wy ¼ qw=qy represent the rotation about Y- and X- axis, respectively; wxy ¼ q2w=qxqy denote the nodal cross-derivative (twist).
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3. Stiffness and mass matrices

By neglecting transverse normal and shear deformation, the displacement field of a thin plate with thickness t can be
written in terms of three independent displacement variables, that is:

Uðx; y; zÞ ¼ uðx; yÞ � z
@wðx; yÞ

@x

Vðx; y; zÞ ¼ vðx; yÞ � z
qwðx; yÞ

qy

Wðx; y; zÞ ¼ wðx; yÞ

9>>>>>=
>>>>>;

(3)

where U(x, y, z), V(x, y, z) and W(x, y, z) represent the displacement of any point on the plate along the X-, Y- and Z-direction,
respectively. Displacements on the mid-plane, i.e. z ¼ 0, are denoted by u(x, y), v(x, y) and w(x, y).

Expanding the mid-plane displacements in terms of COMSFUN gives:

uðx; yÞ ¼
Pp

m¼1

Pq
n¼1

XmðxÞYnðyÞumn

vðx; yÞ ¼
Pp

m¼1

Pq
n¼1

XmðxÞYnðyÞvmn

wðx; yÞ ¼
Pp

m¼1

Pq
n¼1

XmðxÞYnðyÞwmn

9>>>>>>>>>=
>>>>>>>>>;

(4)

where the wmn represents the nodal out-of-plane displacement component or its derivatives, as explained in previous
section and Fig. 2. Following the same representation, parameters umn and vmn denote the nodal in-plane displacement
components or its derivatives in the respective direction. p and q are the number of COMSFUN in the X- and Y-direction,
respectively.
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Fig. 3. A laminated composite plate with fiber direction defined by angle y which varies from lamina to lamina. x1 is taken as the fiber direction, x2 being
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Assuming small deformation, the three in-plane strain components ex, ey and gxy can be expressed in terms of the mid-
plane displacements as:

f�g ¼

�x

�y

gxy

8><
>:

9>=
>; ¼

quðx; yÞ

qx
qvðx; yÞ

qy

quðx; yÞ

qy
þ
qvðx; yÞ

qx

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
� z

q2wðx; yÞ

qx2

q2wðx; yÞ

qy2

2
q2wðx; yÞ

qxqy

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(5)

Substituting Eq. (4) into Eq. (5) gives:

f�g ¼
Xp

m¼1

Xq

n¼1

½B�mnfdgmn (6)

where the strain–displacement matrix [B]mn can be written as:

½B�mn ¼

dXm

dx
Yn; 0; �z

d2Xm

dx2
Yn

0; Xm
dYn

dy
; �zXm

d2Yn

dy2

Xm
dYn

dy
;

dXm

dx
Yn; �2z

dXmdYn

dxdy

2
6666666664

3
7777777775

(7)

and the nodal displacement vector is given by:

fdgmn ¼ fumn;vmn;wmng
T

For a laminated composite plate with various stacking sequence (Fig. 3), it can be shown that the stiffness and mass
matrices ½K�ip and ½M�ip of layer i with density ri can be written as

½K�ip ¼

½K�i1111 . . . . . . ½K�i11pq

. . . . . . . . . . . .

. . . . . . ½K�imnrs . . .

½K�ip111 . . . . . . ½K�ipqpq

2
666664

3
777775
½M�ip ¼

½M�i1111 . . . . . . ½M�i11pq

. . . . . . . . . . . .

. . . . . . ½M�imnrs . . .

½M�ip111 . . . . . . ½M�ipqpq

2
666664

3
777775

(8)

with

½K�imnrs ¼

Z Z Z ziþ1

zi

½B�Tmn½D�i½B�rs dz dy dx (9)

½M�imnrs ¼

Z Z Z ziþ1

zi

½U�Tmnr
i½U�rs dz dy dx; z 2 ½zi; ziþ1� (10)
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where integration is carried out for z 2 ½zi; ziþ1� of layer i with density ri (see Fig. 3) and

½U�mn ¼

XmYn; 0; �z
dXm

dx
Yn

0; XmYn; �zXm
dYn

dy

0; 0; XmYn

2
666664

3
777775

(11)

The material matrix [D]i for layer i in the global coordinate is given by:

½D�i ¼ ½T�i½d�½T�
T
i (12a)

where [d]i is the orthotropic material matrix of layer i in the local coordinate, and [T]i is the corresponding transformation
matrix [11], that is:

½d�i ¼

d11 d12 0

d21 d22 0

0 0 d66

2
64

3
75 (12b)

with

d11 ¼
E1

1� m12m21
; d12 ¼

m12E2

1� m12m21
; d22 ¼

E2

1� m12m21
; d66 ¼ G21; m21 ¼ m12E2=E1 (12c)

and

½T�i ¼

cos2 yi sin2 yi �2 cos yi sin yi

sin2 yi cos2 yi 2 cos yi sin yi

cos yi sin yi � cos yi sin yi cos2 yi � sin2 yi

2
664

3
775 (12d)

With reference to Fig. 3, the material constants E1, E2 represent the longitudinal modulus along the fiber direction x1 and its
transverse direction x2, respectively. m12 is the Poisson’s ratio and G12 denotes the in-plane shear modulus. Yi is the
inclination of fiber direction x1 of layer i to the global X-axis.

All integration is done analytically using the software Mathematica. Summing up contributions from each layer gives
the final stiffness matrix and mass matrices. It is noteworthy that the computation of ½K�imnrs involves integration of the
COMSFUN in each direction, which procedures are reported in [2–4].

4. Elastic support stiffness matrix

For a vertical point support with zero mass and stiffness k located at (xs, ys), its stiffness matrix can be written as:

½Ks� ¼ k

s1111 . . . . . . s11pq

. . . . . . . . . . . .

. . . . . . smnrs . . .

sp111 . . . . . . spqpq

2
666664

3
777775

¼ k½S� (13)

where each term of the spring stiffness matrix [S] is given by

smnrs ¼ XmðxsÞYnðysÞXrðxsÞYsðysÞ

which can be easily obtained by evaluating the respective COMSFUN Xm(x) and Yn(y) at the spring location (xs, ys). In case
the support is located directly at a node, its stiffness is directly added to the corresponding diagonal location in the plate
stiffness matrix. In this study, only single or multiple supports with equal stiffness is considered, and for the latter, the total
support stiffness matrix can be directly added together as:

½Ks� ¼ k
Xno: of springs

i¼1

½S�i ¼ k½ST � (14)

where

Xno: of springs

i¼1

½S�i ¼ ½ST �

It is noteworthy that the rank of [Ks] is equal to the number of point supports.
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5. Optimum support stiffness and location

Once the stiffness and mass matrices for plates and elastic point supports are established, the governing equation for
the whole system can be written as:

½Kp þ Ks�fdg ¼ o2½Mp�fdg (15)

where the subscript p and s denote the plate and spring component of the system stiffness matrix and {d} represents the
nodal displacement vector of the system. Previous researches reveal that the frequencies of a plate can be significantly
increased by adding rigid point supports (i.e. supports with infinitely large stiffness) at the optimal locations. According to
the Courant–Fisher theorem [7], if m numbers of rigid point supports are added, the maximum frequency that the
fundamental frequency o1 can be raised is bounded by the (m+1)th frequency (i.e. om+1) of the original plate. As such, the
optimal location of rigid point supports for maximizing the fundamental frequency of a plate is located on the nodal lines
of the (m+1)th mode of the original plate, and the optimal location can be found by solving the following optimization
problem:

max minðo2ðxs; ysÞÞ

subject to ðxs; ysÞ 2 ONL (16)

where ONL and (xs, ys) represent the nodal lines of the (m+1)th mode of the original plate and the locations of the additional
rigid point supports, respectively. The fundamental frequency reaches its maximum value om+1, should the optimal
solutions of (16) exist.

In practice, however, it is difficult, if not impossible, to construct a support with infinite stiffness. In addition, it was
shown that [9,10] the optimal location of elastic point supports varies with their stiffness. As such, in order to raise the
frequencies of plates, practicing engineers would be more interested in determining the minimum support stiffness
required and the corresponding optimal locations of the supports.

Assuming that it is intended to raise the fundamental frequency of a plate to the (m+1)th frequency om+1, of the original
plate by adding m numbers of elastic supports with the same stiffness k, one can first rearrange Eqs. (14) and (15) as:

½½Kp �o2
mþ1Mp� þ k½ST ��fdg ¼ f0g (17)

which can be considered as an eigenvalue problem for the support stiffness k. Matrices on the left hand side are known
quantities for given support locations. The number of positive, real and finite eigenvalues, if exist, is equal to the rank of [Ks]
(i.e. the number of supports, m) and the maximum of which corresponds to the minimum stiffness of the supports required
to raise the fundamental frequency to the specified frequency. As such, to determine the optimal location of supports, one
can minimize the support stiffness directly [9]:

min maxðkðxs; ysÞÞ

subject to ðxs; ysÞ 2 ONL (18)

Assuming that the nodal line of vibration modes ðONLÞ can be located, both optimization problems as given in (16) and (18)
can be solved using direct search optimization tools available on Matlab. Based on the proposed numerical model and the
direct minimization of support stiffness, optimal locations of elastic point supports are determined for isotropic and
composite laminated plates with various support conditions, as given in the following examples.

5.1. Numerical examples

Examples are given below to demonstrate the application of the proposed COMSFUN to the vibration of plates and
elastic support optimization of isotropic and composite laminated plates. The first two examples involve a square plate
with relatively complex boundary conditions that illustrate the accuracy and convergence characteristics of the proposed
method by comparing its results with those obtained using commercial finite element software (SAP and ABAQUS). Both
isotropic and composite laminated plates with unsymmetric stacking sequence are given. To demonstrate its versatility,
L-shape plates and a square plate with a line crack are presented in Example 3. Optimal locations of elastic point supports
for isotropic cantilevered plates are presented in Example 4 and compared with results given in [10] using conventional
finite elements. Extension to isotropic plates with two clamped edges is also presented, followed by composite laminated
plates with various stacking sequences in Example 5.

Example 1. A square plate of isotropic material, uniform thickness and the following geometric and material properties is
analyzed:

Young’s modulus ¼ 73:1� 109 N=m2; density ¼ 2821 kg=m3; Poisson’s ratio ¼ 0:3;

Thickness ¼ 0:00328 m; length ¼ 0:305 m.
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Convergence of COMSFUN is first investigated using a plate with all edges clamped. Results are compared with FEM (using
the software SAP) based on a mesh of 900 thin-plate elements, as shown in Table 1. Very good agreement can be observed
between the two sets of results; with eleven numbers of COMSFUN in each direction (a total of 121 degrees of freedom), the
lowest 10 frequencies can be predicted with only about 1% difference from SAP. To predict the fundamental frequency, only
7�7 numbers of COMSFUN (with 49 degrees of freedom) is sufficient to generate highly accurate result.

Based on the aforesaid convergence results, the same square plate is analyzed with different combinations of the

following five types of supports:
(1)
Tabl
Conv

Mod

1

2

3

4

5

6

7

8

9

10

11

12

For t
a

b

free edge (F);

(2)
 clamped edge (C);

(3)
 point supported edge (i.e. a free edge with a vertical, rigid point support at the middle);

(4)
 partially supported edges (P) (a free edge with half of it being free and the other half simply supported);

(5)
 rigid point supports.
In addition, an interesting case of a square plate with a diagonally line support is also analyzed. Frequencies obtained are
compared with the analytical results and the Ritz’s results of Young [14] and Abrate [15], respectively. In all cases, all
supports are directly imposed at the corresponding nodes. Results in Tables 2, 3 and 6 demonstrate the accuracy of the
proposed method; all results of the lowest 12 frequencies compare very favorably with the FEM results.

Example 2. To demonstrate the application to plates with membrane-bending coupling, unsymmetric cross-ply composite
laminates with two layers of the following orthotropic material are analyzed:

E1 ¼ 40; E2 ¼ 1; G12 ¼ 0.2; m12 ¼ 0.25; density ¼ 1.0. (refer to Eq. (12b) for definition of symbols)

Length of plate ¼ 100, thickness of each layer ¼ 0.5;

Fiber direction with respect to the global X-axis y: 0/90

Results of the lowest 12 frequencies using the proposed COMSFUN (p ¼ q ¼ 11 is used which amounts to a total of 363

degrees of freedom) are first compared with ABAQUS thin-plate finite element results for two cases: either all edges simply

supported or clamped. A very fine ABAQUS mesh with 2500 elements was used to accurately predict the coupling effect. In

all cases, very good agreement between the two sets of results are observed from Table 4, although the COMSFUN model

only involves less than 5% of the total degrees of freedom of the ABAQUS model.

The same plate is analyzed for a more complicated support condition, namely, two adjacent edges being clamped, the

third edge being point-supported at the middle and the remaining edge being partially supported (half of it being free and

the other half simply supported). In-plane and out-of-plane displacement components are restrained at the point support

and the partially supported edge. For the clamped edge, in-plane, out-of-plane displacements and the out-of-plane

rotations are restrained. Our results compare very favorably with ABAQUS’s results, as shown in Table 4.

Example 3. Having established the accuracy and validity of the proposed method, L-shape cantilever plates with equal or
unequal legs are used to demonstrate that the method can be extended to plates comprising rectangular segments. Each of
the plates in Fig. 4 is divided into three rectangular segments, with the number of subdivision as shown thereon. For the
equal-leg cantilever plate, five beam elements are used to generate eight COMSFUN in each direction for each identical
e 1
ergence of the first 12 frequencies (rad/s) for a square plate with all edges clamped.

e FEM frequencies COMSFUN frequencies

SAP 7�7a Differenceb (%) 8�8a Differenceb (%) 9�9a Differenceb (%) 11�11a Differenceb (%)

1948 1958 0.55 1956 0.44 1955 0.39 1955 0.36

3967 4041 1.86 4006 0.97 3995 0.69 3988 0.52

3967 4041 1.86 4006 0.97 3995 0.69 3988 0.52

5813 5963 2.59 5909 1.65 5892 1.36 5881 1.17

7111 7385 3.86 7340 3.23 7230 1.67 7166 0.77

7148 7409 3.65 7373 3.15 7263 1.62 7199 0.72

8835 9277 5.01 9147 3.53 9039 2.31 8979 1.63

8835 9277 5.01 9147 3.53 9039 2.31 8979 1.63

11380 12 578 10.53 11840 4.04 11883 4.42 11550 1.49

11380 11840 4.04 11883 4.42 11550 1.49

11687 12 252 4.83 12 070 3.28 11977 2.48

12 944 13 639 5.37 13 582 4.93 13 257 2.42

he case with 7�7 terms of COMSFUN, only nine active degrees of freedom remains after applying the support conditions.
Number of terms used for COMSFUN ¼ p� q.

Percentage difference from the SAP results.
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Table 2
First 12 frequencies (rad/s) for a square plate with various supports.

Mode 1 2 3 4 5 6 7 8 9 10 11 12

CFFFa

SAP 188.20 458.85 1147.10 1464.80 1663.50 2894.50 3299.60 3434.00 3794.00 4944.70 5163.40 6366.70

COMSFUN 188.61 462.23 1156.47 1477.27 1682.05 2944.22 3329.29 3485.18 3857.87 5051.23 5276.66 6486.91

Difference (%) 0.22 0.74 0.82 0.85 1.11 1.72 0.90 1.49 1.68 2.15 2.19 1.89

CCFFa

SAP 375.08 1290.30 1437.80 2564.40 3376.80 3534.40 4586.00 4739.20 6516.50 6666.50 6842.60 7704.80

COMSFUN 374.28 1290.21 1443.01 2577.46 3400.14 3549.06 4632.95 4799.20 6581.17 6741.94 6971.26 7858.59

Difference (%) �0.21 �0.01 0.36 0.51 0.69 0.41 1.02 1.27 0.99 1.13 1.88 2.00

CCCFa

SAP 1297.10 2156.40 3428.50 4119.90 4338.50 6231.80 6628.20 7200.30 7548.00 9178.90 9415.10 10 892.00

COMSFUN 1281.49 2156.60 3391.75 4158.16 4340.44 6308.69 6576.41 7315.89 7574.43 9387.99 9563.75 10 900.81

Difference (%) 1.20 �0.01 1.07 �0.93 0.04 1.23 0.78 1.61 0.35 2.28 1.58 0.08

CCCPa

SAP 1707.90 3256.10 3428.50 4338.50 5230.10 6231.80 6846.10 7411.00 8742.80 9178.90 10 421.00 10 892.00

COMSFUN 1713.97 3265.91 3391.75 4340.44 5201.12 6308.69 6867.94 7464.72 8905.44 9387.99 10 574.65 10 900.81

Difference (%) 0.36 0.30 �1.07 0.04 �0.55 1.23 0.32 0.72 1.86 2.28 1.47 0.08

CCCSa

SAP 1713.40 3284.20 3767.90 4728.30 5829.10 6757.80 7125.10 8402.00 8915.90 10 404.00 11121.00 11300.00

COMSFUN 1718.94 3282.82 3770.00 4681.65 5872.64 6782.21 7181.04 8514.94 9086.69 10 537.75 11 299.78 11498.15

Difference (%) 0.32 �0.04 0.06 �0.99 0.75 0.36 0.79 1.34 1.92 1.29 1.61 1.75

CCCS+PSb

SAP 3006.20 3764.40 4135.20 4798.80 6058.40 6784.40 8300.10 8786.30 9886.90 10 429.00 11 244.00 12 068.00

COMSFUN 3014.19 3765.06 4194.58 4764.40 6100.53 6815.50 8417.28 8949.79 10 192.20 10 568.96 11370.79 12 221.58

Difference (%) 0.27 0.02 1.44 �0.72 0.70 0.46 1.41 1.86 3.09 1.34 1.13 1.27

a C ¼ clamped edge; F ¼ free edge; S ¼ partially supported edge; P ¼ point-supported edge. CCFF ¼ two adjacent edges clamped and the remaining

two free.
b CCCS+PS ¼ CCCS and a point support at the center of the plate. Number of terms used for COMSFUN ¼ 11�11 in all cases.

Table 3
First 12 frequencies for a square plate with various supports.

Mode 1 2 3 4 5 6 7 8 9 10 11 12

CCCP�

SAP 1707.90 3256.10 3428.50 4338.50 5230.10 6231.80 6846.10 7411.00 8742.80 9178.90 10 421.00 10 892.00

COMSFUN 1713.97 3265.91 3391.75 4340.44 5201.12 6308.69 6867.94 7464.72 8905.44 9387.99 10 574.65 10 900.81

Difference (%) 0.36 0.30 �1.07 0.04 �0.55 1.23 0.32 0.72 1.86 2.28 1.47 0.08

CCCS�

SAP 1713.40 3284.20 3767.90 4728.30 5829.10 6757.80 7125.10 8402.00 8915.90 10 404.00 11121.00 11300.00

COMSFUN 1718.94 3282.82 3770.00 4681.65 5872.64 6782.21 7181.04 8514.94 9086.69 10 537.75 11299.78 11498.15

Difference (%) 0.32 �0.04 0.06 �0.99 0.75 0.36 0.79 1.34 1.92 1.29 1.61 1.75

CCCS+Pt Suppa

SAP 3006.20 3764.40 4135.20 4798.80 6058.40 6784.40 8300.10 8786.30 9886.90 10 429.00 11244.00 12 068.00

COMSFUN 3014.19 3765.06 4194.58 4764.40 6100.53 6815.50 8417.28 8949.79 10 192.20 10 568.96 11370.79 12 221.58

Difference (%) 0.27 0.02 1.44 �0.72 0.70 0.46 1.41 1.86 3.09 1.34 1.13 1.27

� C ¼ clamped edge; S ¼ partially supported edge; P ¼ point-supported edge. CCCS ¼ three adjacent edges clamped and the remaining one partially

supported.
a CCCS and one point support at the center of the plate. Number of terms used for COMSFUN ¼ 11�11 in all cases.
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segment; for the unequal-leg cantilever plate, however, different numbers of COMSFUN are used in each segment provided
that compatibility is maintained across the interface. Stiffness and mass matrices for each segment are formed and they are
then assembled for the entire plate in the conventional finite element manner, while maintaining compatibility of
deflection and slope across the interfaces. As shown in Fig. 4, the plate is clamped on one edge with or without point
supports, and the lowest 10 frequencies are compared with ABAQUS using a fine mesh of 1200 elements. In all cases, the
COMSFUN results agree closely with the ABAQUS results with less than 1.5% difference, as shown in Table 5.

Another interesting problem involves a simply supported plate with a line crack along its center line, see Fig. 5. Due to

symmetry, half of the plate is analyzed using COMSFUN. Rotations and vertical deflections are restrained along the
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Table 4
First 12 frequencies (�10�3 rad/s) for an un-symmetric cross-ply square plate with different support conditions.

Mode 1 2 3 4 5 6 7 8 9 10 11 12

SSSS

COMSFUN 1.5749 3.2011 3.2011 4.3665 7.2745 7.2912 7.9529 7.9529 10.4500 12.1320 12.1320 12.6562

ABAQUS 1.5755 3.2033 3.2033 4.3681 7.2527 7.2692 7.9298 7.9298 10.4077 11.9058 11.9058 12.4298

Difference (%) �0.04 �0.07 �0.07 �0.04 0.30 0.30 0.29 0.29 0.41 1.90 1.90 1.82

CCCC

COMSFUN 2.3721 4.9204 4.9204 6.6088 9.2768 9.2844 10.3420 10.3420 13.1287 15.6741 15.6741 16.3738

ABAQUS 2.3737 4.9222 4.9222 6.6081 9.2123 9.2199 10.2788 10.2788 13.0228 15.0964 15.0964 15.8129

Difference (%) �0.07 �0.04 �0.04 0.01 0.70 0.70 0.61 0.61 0.81 3.83 3.83 3.55

CCSP

COMSFUN 1.0451 1.8609 3.7902 4.0741 4.8298 5.5337 6.6031 7.0491 8.5697 9.2349 9.9785 10.2045

ABAQUS 1.0320 1.8355 3.6969 4.0355 4.7696 5.4720 6.4928 6.9176 8.5279 9.1370 9.8978 10.0656

Difference (%) 1.21 1.38 2.52 0.96 1.26 1.13 1.70 1.90 0.49 1.07 0.81 1.38

Number of terms used for COMSFUN ¼ 11�11 in all cases.
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Y

Fig. 4. (a) An equal-leg L-shape plate divided into three identical square segments. a ¼ 100 units. Continuity of slope and deflection are maintained across

their interfaces. p ¼ q ¼ 8 for each segment. (b) An unequal leg L-shape plate with three unequal rectangular segments. a ¼ c ¼ 100, b ¼ 160, d ¼ 60.

p ¼ q ¼ 8 for segment I, p ¼ 8, q ¼ 13 for segment II, p ¼ 9, q ¼ 8 for segment III. The plates are clamped at X ¼ 0 with or without point supports, which

are denoted by X in the figure. E ¼ 40; m ¼ 0.25; density ¼ 1; thickness ¼ 1.
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Table 5
First 10 frequencies (�10�3 rad/s) for L-shape cantilevered plates in Fig. 4.

Mode 1 2 3 4 5 6 7 8 9 10

Equal-leg cantilever Fig. 4(a)

COMSFUN 0.1992 0.7331 0.9654 1.3117 2.3450 2.9051 3.7156 4.3150 4.7060 5.0101

ABAQUS 0.1989 0.7321 0.9625 1.3057 2.3411 2.9060 3.7062 4.3116 4.6826 5.0032

Difference (%) 0.16 0.13 0.31 0.46 0.17 0.03 0.26 0.08 0.50 0.14

Equal-leg cantilever+one point support Fig. 4(a)

COMSFUN 0.3074 0.8972 1.1876 1.7536 2.9022 3.4933 3.7251 4.5602 4.8398 5.0190

ABAQUS 0.3059 0.8949 1.1787 1.7440 2.9020 3.4638 3.7127 4.5368 4.8187 5.0091

Difference (%) 0.49 0.26 0.75 0.55 0.01 0.85 0.33 0.51 0.44 0.20

Unequal-leg cantilever Fig. 4(b)

COMSFUN 0.2431 0.7583 1.1276 1.6097 2.3402 3.9585 4.4107 4.9566 5.2842 6.0391

ABAQUS 0.2422 0.7516 1.1176 1.5922 2.3102 3.9060 4.3627 4.8872 5.2168 5.9524

Difference (%) 0.41 0.88 0.90 1.10 1.30 1.13 1.11 1.42 1.29 1.46

Unequal-leg cantilever+six point supports Fig. 4(b)

COMSFUN 2.1749 2.7185 3.2968 3.3877 4.8249 5.1455 5.8749 6.5667 7.3726 8.6545

ABAQUS 2.1643 2.7197 3.2645 3.3624 4.7586 5.0817 5.8059 6.4704 7.2629 8.5354

Difference (%) 0.49 0.04 0.99 0.75 1.39 1.25 1.19 1.49 1.50 1.40

Interface Crack length = a/2 

a

b

b

Fig. 5. A rectangular plate with a central line crack.

Table 6

First five frequencies parameters l2
¼ oa2 (rt/D)1/2 for an isotropic square plate with simply-supported edges and a diagonally line support. Number of

terms used for COMSFUN ¼ 11�11.

Frequency l2

Mode COMSFUN Abrate [15] Analytical [14]

1 50.015 49.3480 49.348

2 66.432 66.020 65.80

3 100.095 98.696 98.696

4 121.708 122.552 121.95

5 129.886 128.305 128.300
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separation line for the symmetric modes and anti-symmetric modes, respectively. In both cases, the crack line remains free.

COMSFUN results are compared with analytical results [12,13] and good agreement among the three sets of results can be

observed from Table 7.

Example 4. The isotropic square plate as given in Example 1 is analyzed again with elastic spring supports. Only one of the
edges is fully clamped with the remaining edges free. This plate was previously studied by Wang et al. [10] for support
optimization. The first three fundamental frequencies obtained using COMSFUN are compared with Wang’s FEM results,
and excellent agreement can be observed from Table 8. The second mode of this cantilever plate corresponds to a torsional
mode about its axis of symmetry (see Fig. 6). As such, an elastic support is placed at the center of the free edge opposite to
the clamped edge, and its minimum stiffness required to raise the fundamental frequency to the second frequency of the
original plate (o2) is determined by using the eigenvalue Eq. (17). The minimum stiffness obtained using the COMSFUN
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Table 7

Comparison of normalized frequencies l2
¼ oa2 (rt/D)1/2 for the first three anti-symmetric and symmetric modes of a cracked plate.

Modes COMSFUNa Yu [13] Stahl et al. [12] Difference (%)

A1 72.02 73.43 73.52 2.04

A2 169.61 168.6 168.6 �0.60

A3 196.87 197.9 198 �0.57

S1 41.90 40.46 40.32 3.92

S2 72.72 72.78 72.77 �0.07

S3 124.20 123.5 123.5 �0.56

D ¼ Et3/12(1�m2).
a COMSFUN used: symmetric half of the plate was analyzed with p ¼ 7 along the shorter span and q ¼ 11 along the direction of the cracked center

line.
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Fig. 6. Second mode of a cantilever (CFFF) plate.

Table 8
Comparison of frequencies (Hz), minimum support stiffness (ksL

2/D) and the corresponding support location (x/L for cantilever 2 or y/L for cantilever 3) for

a cantilevered square plate with L ¼ 0.305 m. The plate is clamped at x ¼ 0. D ¼ Et3/12(1�m2).

Frequency

Mode COMSFUN Wang [10] Difference (%)

1 30.018 30.005 0.04

2 73.566 73.555 0.02

3 184.058 184.394 �0.18

Support stiffness Support Location

Problema COMSFUN Wang [10] COMSFUN Wang [10]

Cantilever 1 24.08951 23.96060

Cantilever 2 23.69508 23.63130 0.97071 0.97340

Cantilever 3 9.32034 9.32620 0.28993 0.28400

a cantilever 1 ¼ point support located at the middle of the free edge (i.e. at x/L ¼ 1, y/L ¼ 0.5); cantilever 2 ¼ support located along the axis of

symmetry (i.e. along y/L ¼ 0.5); cantilever 3 ¼ two supports located symmetrically about the center of the free edge (i.e. they are located along x/L ¼ 1).

Number of terms used for COMSFUN ¼ 11�11.
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model agrees very well with Wang’s FEM model, see Table 8 (cantilever 1). This location, however, does not correspond to
the optimal location. On this axis of symmetry, positive eigenvalue of Eq. (17) does not exist for supports located from the
clamped edge up to x ¼ 0.1525 m, thus indicating that even a rigid support located within this region is unable to raise the
fundamental frequency to o2. A plot of the minimum support stiffness required, from x ¼ 0.25 m up to the free edge, is
given in Fig. 7, which clearly shows that the optimum location is located close to the free edge, but not exactly thereon. The
final optimum location and the corresponding minimum support stiffness are given in Table 8 (cantilever 2), which
compare well with Wang’s findings.
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Alternatively, to raise the fundamental frequency of the cantilevered plate to o2, two elastic supports are placed

symmetrically along the free edge. The optimal locations of the supports are obtained directly by minimizing the support

stiffness. Our results compare favorably with those of Wang, as indicated in Table 8 (cantilever 3).
Table 9
Minimum support stiffness (ksL

2/D) for simply supported, composite laminates.

Antisymmetric angle-ply Unsymmetric unbalanced laminate

Frequencya Frequencya

Angle Mode 1 o1 Mode 2 o2 Support stiffness Angle Mode 1 o1 Mode 2 o2 Support stiffness

90/90 1.8543 2.2303 16.1952 0/90 1.5749 3.2011 91.2621

75/�75 1.6570 2.3847 31.0737 0/75 1.5745 3.0582 75.6899

60/�60 1.7291 3.1285 95.4378 0/60 1.6030 2.8975 63.9214

45/�45 1.8389 3.7296 257.1598 0/45 1.6466 2.7319 51.9092

30/�30 1.7291 3.1285 95.4378 0/30 1.6500 2.4957 35.9773

15/�15 1.6570 2.3847 31.0737 0/15 1.7328 2.2761 22.6669

0/0 1.8543 2.2303 16.1952 0/0 1.8543 2.2303 16.1952

L ¼ 100; D ¼ E1t3/12(1�m12
2 ).

a First two natural frequencies (�10�3 rad/s) of the original plate.
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The same isotropic square plate is analyzed again with two adjacent edges fully clamped and the remaining

edges free. Unlike the previous case, the second mode of this plate corresponds to a torsional mode about its diagonal, as

shown in Fig. 8. A plot of the minimum support stiffness along the diagonal indicates that the optimum location can only

be found in the region as shown in Fig. 9, beyond which positive eigenvalues of Eq. (17) does not exist. By directly

minimizing the support stiffness, the exact location of x ¼ 0.2347 m, y ¼ 0.2347 m on the diagonal and the corresponding

minimum spring stiffness of ksL
2/D ¼ 241.5082 can be found. In this case, no result is available in the literature for

comparison.

Example 5. A two-layer, composite laminated square plate with geometry and material properties being the same as those
defined in Example 2 is analyzed. In addition to unsymmetric cross-ply laminates, anti-symmetric angle-ply (y/�y) and
unsymmetric, unbalanced (0/y) laminates are also considered. The plate is simply supported around all edges with both
in-plane and out-of-plane displacements being restrained. An elastic spring is imposed at the center of the plate and the
objective is to determine its minimum stiffness required to raise the fundamental frequency of the supported plate to the
second natural frequency of the original plate. Results for both cases are summarized in Table 9 and Fig. 10, which clearly
demonstrates that the variation of minimum spring stiffness required for various ply angles follows closely the
corresponding change in frequency (o2�o1) required.

6. Conclusions

Vibration of isotropic and composite laminated plates with various boundary and internal support conditions is
analyzed in a unified manner using the computed shape function and thin-plate theory. Similar to the conventional finite
element shape functions, parameters associated with each term of the proposed functions represent the actual
displacements of the plates, thus making the method easily applicable to a wide range of support conditions, as
demonstrated in the examples given. The method is also applied to analyze L-shape plates, which can be sub-divided into
rectangular segments and assembled in the usual finite element manner. It is noteworthy that, unlike other admissible
functions proposed in the literature, the computed shape functions presented herein are C1—continuous and involve no
complicated mathematical functions or implementation. In all the given examples, only several terms of these functions
are sufficient to obtain very accurate results for the lowest 10 frequencies, thus demonstrating its computational
effectiveness and rapid convergence.

Taking advantage of the computational efficiency of the proposed method, it is also applied to determine the optimal
location and stiffness of discrete elastic supports in maximizing the fundamental frequency of isotropic plates and
composite plates. For isotropic plates with one edge clamped, the minimum stiffness and optimal locations determined are
verified against available results from the literature. In addition, the method was used to analyze plates with two adjacent
clamped edges and also simply supported composite plates with various stacking sequences; no results are available in the
literature for comparison in these cases. In this study, only examples of plates that allow easy location of the nodal lines are
given; the method is currently being extended to general cases where the nodal lines of vibration cannot be easily
identified.
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